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ABSTRACT 
The addition of storage technologies such as lead-acid batteries, flow batteries, or heat 

storage can potentially improve the economic and environmental attractiveness of on-

site generation such as PV, fuel cells, reciprocating engines or microturbines (with or 

without CHP), and can contribute to enhanced demand response. Preliminary analyses 

for a Californian nursing home indicate that storage technologies respond effectively to 

time-varying electricity prices, i.e. by charging batteries during periods of low electricity 

prices and discharging them during peak hours. While economic results do not make a 

compelling case for storage, they indicate that storage technologies significantly alter 

the residual load profile, which may lower carbon emissions as well as energy costs 

depending on the test site, its load profile, and DER technology adoption. 

Introduction 

In this paper, a microgrid is defined as a cluster of electricity sources and (possibly 

controllable) loads at one or more locations that are connected to the traditional wider 

power system, or macrogrid, but which may, as circumstances or economics dictate, 

disconnect from it and operate as an island, at least for short periods (Hatziargyriou, N. 

et al. 2007). The Berkeley Lab has developed the Distributed Energy Resources 

                                                 
1 The work described in this paper was funded by the Office of Electricity Delivery and Energy 
Reliability, Renewable and Distributed Systems Integration program of the U.S. Department of Energy 
under Contract No. DE-AC02-05CH11231. 
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Customer Adoption Model (DER-CAM), (Siddiqui et al. 2003, Stadler et al. 2006). Its 

optimization techniques find both the combination of equipment and its operation over a 

typical year to minimize the site’s total energy bill, typically for electricity and natural gas 

purchases, as well as amortized equipment costs. The latest version also includes 

storage technologies such as regular batteries (e.g. lead-acid batteries), flow batteries 

as well as heat storage. 

The Distributed Energy Resources - Costumer Adoption Model (DER-CAM) 

DER-CAM (Siddiqui et al. 2003) is a mixed-integer linear program (MILP) written and 

executed in the General Algebraic Modeling System (GAMS®). Its objective is to 

minimize the annual costs for providing energy services to the modeled site, including 

utility electricity and natural gas purchases, amortized capital, and maintenance costs 

for distributed generation (DG) investments. It outputs the optimal DG and storage 

adoption combination and an hourly operating schedule, as well as the resulting costs, 

fuel consumption, and carbon emissions. Figure 1 shows a high-level schematic of the 

energy flow as modeled in DER-CAM. 

Optimal combinations of equipment involving PV, thermal generation with heat recovery, 

thermal heat collection, and heat-activated cooling can be identified in a way that would 

be intractable by trial-and-error enumeration of possible combinations. The economics 

of storage are particularly complex, both because they require optimization across 

multiple time steps and because they are heavily influenced by complex tariff structures 

(on-peak, off-peak, demand charges, etc.). Note that facilities with on-site generation will 

incur electricity bills more biased toward demand (peak power) charges and less toward 

energy charges, thereby making the timing and control of chargeable peaks of particular 

operational importance. 

DER Equipment Including Storage Technologies  

The menu of available equipment options to DER-CAM for this analysis together with 

their cost and performance characteristics are shown in Tables 1, 2, and 3. While the 
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current set of available technologies is limited in this analysis, any candidate technology 

may potentially be included. 

Technology options in DER-CAM are categorized as either discretely or continuously 

sized. This distinction is important to the economics of DER because some equipment is 

subject to strong diseconomies of small scale. Continuously sized technologies are 

available in such a large variety of sizes that it can be assumed that close to optimal 

capacity could be implemented, e.g. battery storage. The installation cost functions for 

these technologies are assumed to consist of an unavoidable cost (intercept) 

independent of installed capacity representing the fixed cost of the infrastructure 

required to adopt such a device, plus a variable cost proportional to capacity. 

Results 

The northern Californian nursing home is the first of several California and New York 

being studied. The home has a peak total electrical load of 958 kW. Table 4 shows its 

local Pacific Gas and Electric (PG&E) rates. Carbon emission intensities of purchased 

electricity and natural gas from PG&E are assumed to be 140 g/kWh (marginal value) 

and 49 g/kWh, respectively. Six DER-CAM runs were performed: 1. a do nothing case in 

which all DER investment is disallowed, i.e., the nursing home meets its local energy 

demands solely by purchases; 2. an invest case, which finds the optimal DER 

investment; 3. a low storage and PV price; 4. to assess the value of storage systems, a 

run was performed forcing the same investments as run 3, but with storage disallowed; 

5. a low storage, PV, and solar thermal price run; and 6. a low storage price and 60% 

PV price reduction/subsidy run. 

The number of installed Tecogen® reciprocating engine stays constant in all performed 

runs because CHP is attractive to this site because of the coincidence of heat and 

electric loads. DER-CAM also provides an optimal schedule for each installed 

technology, which is illustrated using the low storage cost runs 3 and 6 (Figure 2 to 4). 

Note that since electric cooling loads can be offset by the absorption chiller, there are 
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four possible ways to meet cooling loads: utility purchases of electricity, on-site 

generation of electricity, absorption chiller offsets, and stored electricity in batteries.  

At the assumed price levels, neither electric nor thermal storage is economically 

attractive (see run 2). Including low-cost storage of US$50/kWh for solar thermal and 

US$60/kWh for electric storage lowers annual operating costs by almost 5% (see run 3); 

however, the elemental carbon reduction is only ca. 12% meaning that elemental carbon 

emission reduction is lower with the adoption of electric and thermal storage than 

without it (run 2). This finding is proven by run 4, which forces the same results as in the 

low storage cost run 3, but prohibits storage adoption. The major driver for electric 

storage adoption is the objective to reduce energy costs, and this can be effectively 

reached by avoiding electricity consumption during on-peak hours. Batteries are 

charged by cheap off-peak electricity and displaces utility consumption during on-peak 

hours (see also Figure 3). Assuming the same marginal carbon emission rate during on- 

and off-peak hours results in additional carbon emissions (efficiency losses); however, 

as shown in run 6 (see Table 5), the combination of PV and electrical storage brings 

together the positive economic effects of batteries with the positive environmental 

effects of PV.  

Conclusions 

The results show a wide range in the complexity of optimal systems but fairly similar 

costs and diverse carbon emissions. Heat, electric load profile, tariff structure, available 

solar insolation, and installed DG equipment all have strong effects on the site’s 

achievable energy cost and carbon abatement. The demand charge is a significant 

driver for the adoption of electric storage technologies and so storage is discharged 

during productive PV hours, raising carbon emissions overall.  
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Figure 1. Schematic of DER-CAM 
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Table 1. Energy Storage Parameters 

 description electrical flow 
battery thermal 

charging 
efficiency (1) 

portion of energy input to storage 
that is useful 0.9 0.84 0.9 

discharging 
efficiency (1) 

portion of energy output from 
storage that is useful 1 0.84 1 

decay (1) portion of state of charge lost per 
hour 0.001 0.01 0.01 

maximum 
charge rate (1) 

maximum portion of rated capacity 
that can be added to storage in an 
hour 0.1 n/a 0.25 

maximum 
discharge rate 
(1) 

maximum portion of rated capacity 
that can be withdrawn from storage 
in an hour 0.25 n/a 0.25 

minimum state 
of charge (1) 

minimum state of charge as 
apportion of rated capacity 0.3 0.25 0 

 
 
Table 2. Menu of Available Equipment Options, Discrete Investments.  
 reciprocating 

engine fuel cell 

capacity (kW) 100 200 
sprint capacity 125  
installed costs (US$/kW) 2400 5005 
installed costs with heat recovery 
(US$/kW) 3000 5200 
variable maintenance (US$/kWh) 0.02 0.029 
efficiency (%), (HHV) 26 35 
lifetime (a) 20 10 
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Table 3. Menu of Available Equipment Options, Continuous Investments 

 electrical 
storage 

thermal 
storage 

flow 
battery 

absorption 
chiller 

solar 
thermal 

photo-
voltaics 

intercept 
costs (US$) 295 10000 0 20000 1000 1000 

variable costs 
(US$/kW or 
US$/kWh) 

193 
US$/kWh 

100 
US$/kW

h 

220 
US$/kWh / 

2125 
US$/kW 

127 
US$/kW 

500 
US$/kW 

6675 
US$/kW 

lifetime (a) 5 17 10 15 15 20 
 
 

Table 4. Commercial Energy Prices (source: PG&E, effective Nov 2007) 
Summer (May – Oct.) Winter (Nov. – Apr.) 

Electricity electricity 
(US$/kWh) 

demand 
(US$/kW)

electricity 
(US$/kWh)

demand 
(US$/kW)

on-peak 0.16 15.04   
mid-peak 0.12 3.58 0.12 1.86 
off-peak 0.09  0.10  
fixed 
(US$/day) 9.04 

 

Natural Gas 
0.04 US$/kWh

4.96 fixed 
(US$/day)

 

summer on-peak: 12:00 – 18:00 during weekdays 
summer mid-peak: 08:00 – 12:00 and 18:00 – 22:00 during weekdays 
summer off-peak: remaining hours and days 
winter mid-peak: 08:00 – 22:00 during weekdays; 
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Table 5. Annual Results for the Northern California Nursing Home 
 run 1 run 2 run 3 run 4 run 5 run 6 
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equipment 
Tecogen 100 kW with 
heat exchanger (kW) 300 300 300 300 300
abs. Chiller (kW in terms 
of electricity) 48 46 46 85 40
solar thermal collector 
(kW) 134 109 109 443 43
PV (kW) 0 0 0 0 517
electric storage (kWh) 0 4359 n/a 4148 2082
thermal storage (kWh) 

n/a 

0 123 n/a 196 47
annual total costs (kUS$) 

total 964 926 916 926 915 910
% savings compared to 
do nothing n/a 3.94 4.98 3.94 5.08 5.60

annual elemental carbon emissions (t/a) 
emissions 1088 945 960 946 944 834
% savings compared to 
do nothing n/a 13.14 11.76 13.05 13.24 23.35
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Figure 2. Jan. Weekday low Storage and PV Price (run 3) Diurnal Heat Pattern 

 
 

Figure 3. Jul. Weekday low Storage and PV Price (run 3) Diurnal Elec. Pattern 
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Figure 4. Jul. Weekday low Storage Price and 60% PV Price Reduction (run 6) 
Diurnal Elec. Pattern 

 




